Lara Copper Project

Lara 45%-Owned Property in Southern Peru
Forward Looking Statements

Except for statements of historical fact relating to the Company, certain information contained herein constitutes forward-looking statements. Forward-looking statements are frequently characterized by words such as “plan”, “expect”, “project”, “intend”, “believe”, “anticipate” and other similar words, or statements that certain events or conditions “may” or “will” occur. Forward-looking statements are based on the opinions and estimates of management on the date the statements are made, and are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those projected in the forward-looking statements. There can be no assurance that such forward-looking statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on such statements.

The Company does not undertake to update any forward-looking statements that are incorporated by reference herein, except in accordance with applicable securities laws. For a description of material factors that could cause the Company’s actual results to differ materially from the forward-looking statements, please review the Company’s Management Discussion & Analysis and Financial Statements filed on www.sedar.com.

Michael Bennell, Lara’s Vice President Exploration and a Fellow of the Australasian Institute of Mining and Metallurgy, is a Qualified Person as defined by National Instrument 43-101 Standards of Disclosure for Mineral Projects of the Canadian Securities Administrators, and has verified the data disclosed, including sampling, analytical and test data underlying the information or opinions contained in the written disclosure and approved the written disclosure of the technical information in this presentation regarding the Company’s projects.

TSX-V: LRA
Introduction

• 1,800ha in three mining concessions
• Easy access from the coast
• Elevations range from 1,500m to 2,500m
• Cretaceous and Lower Tertiary Cu-Mo porphyry belt
• The belt hosts world class copper deposits and mines such as Quellaveco and Cerro Verde

Lara Porphyry - Access and Drill Roads
Location and Access

- 400 km from Lima to Palpa on the Pan-American Highway (~5 hours)
- 32 km NE from Palpa on a reasonably maintained dirt road to Hornopampa (1 hour)
- 8 km to the project site on a dirt road (requires upgrading)
Porphyry Deposits Southern Peru

LEGEND
- Minas Dixon properties hosted in Cretaceous porphyry
- Cretaceous porphyry
- Paleocene porphyry
- Zafranal sub-belt
- Lara sub-belt
- Puquio sub-belt
- Paleocene sub-belt

0 100 200 Km.
Exploration History

- Mapping and sampling 1995
- IP and magnetic surveys 1997 and 2011
- Several drill campaigns between 1997 and 2012 totaling approximately 9,859 m in 48 holes
- Preliminary metallurgical testwork on drill core 1998
- Inferred resource estimate 2005

Project Geology

- Regionally the project lies within the Coastal Batholith (granodiorites and tonalites)
- Mineralization is hosted by two acid to intermediate porphyry centers, Lara and Socos
- Rhyolite porphyry dykes
- Late andesitic and dacitic dykes

Coastal Batholith host rock
Target Geology

Geology
- Alluvial-Colluvial
- Lapilli - Trachyte Tuff
- Andesite dike
- Aplite dike
- Dacite porphyry
- Monzonite Porphyry
- Post mineral dykes
- Diorite-Quartz-Diorite

Property
- Lara Property
Looking North to the Lara Target Area
Alteration

Phyllic alteration - Lara Target

- Potassic, phyllic, argillic and propylitic alteration
Supergene enrichment

- The typical sequence of intensely leached rock, followed by a copper-oxide zone, an enrichment zone and primary sulphide ore at depth

Leached intrusive with phyllic alteration and hematite lined quartz stockwork veining
Leached feldspar-porphyry with phyllic alteration and closely-spaced hematite-lined sheeted quartz veins
Geophysics - IP Chargeability

Drilling
- Diamond Drill
- Drilling RC

Geochemistry
- Cu_ppm
 - 5000.1 - 112600.0
 - 1000.1 - 5000.0
 - 500.1 - 1000.0
 - 100.1 - 500.0
 - 50.1 - 100.0
 - 10.1 - 50.0
 - 9.7 - 10.0

Lara

Socos
Mineralization

- Leach cap (30 m to 80 m)
- Oxide blanket with malachite, chrysocolla, azurite and black copper oxides tenorite and neotocite (5 m to 20 m)
- Supergene enriched blanket with chalcocite and minor covellite (10 m to 40 m)
- Primary mineralization with chalcopyrite, pyrite and minor bornite
- High pyrite-chalcopyrite ratio
Section Lara Oxide-Supergene Zone
Oxide, Supergene and Hypogene

Viewed area

Oxide by Thickness
Ranges
- 1
- 5
- 15
- 20

Average Hypogene
Ranges
- 0.1
- 0.2
- 0.3
- 0.4
Drill Core - Supergene Zone

- Leached intrusive with abundant hematite and quartz veinlets up to 10mm
• Malachite and black copper oxides (tenorite and neotocite) on fracture
• Sericite-biotite-potassium feldspar altered intrusive with abundant disseminated chalcocite coated pyrite and chalcopyrite as well as black copper oxides (tenorite and neotocite) and minor malachite
Drill Core – Primary Mineralization

- Sericite altered intrusive with quartz-pyrite +/- chalcopyrite veinlets to 4 mm and 3% disseminated pyrite
Resource Estimate

• 18.6 Mt @ 0.53 % Cu (0.20 % Cu cut-off)*

2007-2012 Drill Results
Exploration Potential

• Extending the oxide and enrichment blanket in the area between Lara and Socos as well as at Socos

• Confirming large volume primary mineralization within the 2,000 m x 800 m target zone including Lara, Socos and the adjacent IP and geochemical anomalies
News Releases and Technical Reports

Drilling results from the Lara Project were disclosed by Lara in news releases dated January 21, 2008, January 31, 2011 and February 28, 2012, which can be found in the News section of the Company website and filed on SEDAR (www.sedar.com).

Two Technical Reports have been prepared on the project:

Qualified Person

Michael Bennell, Lara’s Vice President Exploration and a Fellow of the Australasian Institute of Mining and Metallurgy (AusIMM), is a Qualified Person as defined by National Instrument 43-101 Standards of Disclosure for Mineral Projects and has approved the technical disclosure and verified the technical information in this Presentation.